

Unlocking the potential of metal air batteries through materials development

Nagore Ortiz-Vitoriano

Gandía, October 17, 2023

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

INDEX

- 1. The energy problem & Beyond Li-ion batteries
- 2. Introduction to Batteries
- 3. Metal-air batteries
- 4. Non-aqueous (aprotic)-air batteries (Na)
- 5. Aqueous-air batteries (Zn)

1. The energy problem

> The energy problem solution relies on the use of renewable sources

THE ENERGY CRISIS IS A RESULT OF MANY DIFFERENT STRAINS ON OUR NATURAL RESOURCES

India Gate – New Delhi

Demand & Consumption

CIC

energi

> Beyond Li-ion Batteries

CURRENT ENERGY OUTLOOK

Current Energy Outlook

- Advanced electronic devices have evolved rapidly, contributing to an ever-increasing demand for power sources with high energy density & high power density.
- Li-ion technologies, i.e. electric cars, are actually the hope for fulfilling many of these demands.
 - However, Li-ion batteries are actually limited by:
 - > The intercalation chemistry of the electrodes;
 - > Energy density;
 - > Use of EU-listed Critical Raw Materials (CRMs).

DOI: 10.1016/j.mattod.2015.10.009

		2020 Critical Raw Materials (new as compared to 2017 in b					
Antimony Baryte		Hafnium	Phosphorus				
		Heavy Rare Earth Elements	Scandium				
	Beryllium	Light Rare Earth Elements	Silicon metal				
	Bismuth	Indium	Tantalum				
	Borate	Magnesium	Tungsten				
	Cobalt	Natural Graphite	Vanadium				
	Coking Coal	Natural Rubber	Bauxite				
	Fluorspar	Niobium	Lithium				
	Gallium	Platinum Group Metals	Titanium				
	Germanium	Phosphate rock	Strontium				

CIC

> Beyond Li-ion Batteries BATTERIES EUROPE

BATTERIES EUROPE EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM

European Technology and Innovation Platform on Batteries - Batteries Europe

Battery Generation	Electrodes active materials	Cell Chemistry / Type	Forecast market deployment
Gen 1	Cathode: LFP, NCAAnode: 100% carbon	Li-ion Cell	current
Gen 2a	Cathode: NMC111Anode: 100% carbon	Li-ion Cell	current
Gen 2b	Cathode: NMC523 to NMC 622Anode: 100% carbon	Li-ion Cell	current
Gen 3a	 Cathode: NMC622 to NMC 811 Anode: carbon (graphite) + silicon content (5-10%) 	Optimised Li-ion	2020
Gen 3b	 Cathode: HE-NMC, HVS (high-voltage spinel) Anode: silicon/carbon 	Optimised Li-ion	2025
Gen 4a	 Cathode NMC Anode Si/C Solid electrolyte 	Solid state Li-ion	2025
Gen 4b	Cathode NMC Anode: lithium metal Solid electrolyte	Solid state Li metal	>2025
Gen 4c	Cathode: HE-NMC, HVS (high-voltage spinel) Anode: lithium metal <u>Solid electrolyte</u>	Advanced solid state	2030
Gen 5	 Li O₂ – lithium air / metal air Conversion materials (primarily Li S) new ion-based systems (Na, Mg or Al) 	New cell gen: metal-air/ conversion chemistries / new ion-based insertion chemistries	>2030

2. Introduction to Batteries

LAB

> Electrochemical Energy Storage

INTRODUCTION TO BATTERIES

A battery is a device that converts the chemical energy contained in its active materials directly into electric energy by means of an electrochemical oxidation-reduction (redox) reaction.

In 1800, Alessandro Volta invented the first modern battery.

Primary

- ✓ Irreversible oxidation-reaction reaction
- \checkmark Also called non-rechargeable or throw away

Secondary

 ✓ Involves the transfer of electrons from one material to another through an electric circuit

> Electrochemical Energy Storage

INTRODUCTION TO BATTERIES

First commercial Lithium-ion battery

 In 1991 by Sony. LiCoO₂ cathode material (still used in the majority of commercial Li-ion batteries). Graphite anode material.

However, there are issues with $LiCoO_2$ material; e.g. cost and toxicity of Co, capacity not high enough.

INTRODUCTION TO BATTERIES

The Nobel Prize in Chemistry 2019 rewards the development of Li-ion Battery

- Early 1970s, Dr. Whittingham figured out that Li would make a good anode because it releases electrons easily → first functional lithium battery.
- Around 1980, Dr. Goodenough predicted that lithium-ion batteries would have greater potential if the cathode were made with different materials, for example, cobalt oxide.
- Finally, Dr. Yoshino followed Goodenough's step and showed that more complicated carbon-based electrodes could eliminate pure lithium from the battery entirely. Instead, the battery used only lithium-ions which it causes to become safer.

Electrochemical Energy Storage

BEGINNING OF LI-ION

>

Figure 1. The evolution of battery chemistry and key findings of lithium-ion batteries (LIBs) and solid state batteries (SSBs) over the past 40 years. The crystal structures of the electrode materials are obtained from the Materials Project^[6] and are visualized with VESTA software^[7]. The photographs of Bluecar[®] and Bluebus[®] are provided here by courtesy of Bollore Group.

H. Zhang, AngewChemInternational Ed 10.1002/anie.201913923

CIC energi GUNE

MEMBER OF RASQUE RESEARCH & TECHNOLOGY ALLIANCE

> Electrochemical Energy Storage

MECHANISMS IN ELECTRODE MATERIALS

Fig. 5 A schematic representation of the different reaction mechanisms observed in electrode materials for lithium batteries. Black circles: voids in the crystal structure, blue circles: metal, yellow circles: lithium.

© CICenergiGUNE. 2020. All rights reserved.

CIC energi GUNE

MEMBER OF RASQUE RESEARCH & TECHNOLOGY ALLIANCE

3. Metal-air batteries

1

LAB

> Beyond Li-ion batteries

PROMISING BATTERY TECHNOLOGY

- Metal-air battery technologies: holy grain of battery research & theoretically could store 11 times more energy than Li-ion
- "Horizon technology" but big companies interested (Tesla, Toyota, IBM)

350 - 400 Wh/kg_{cell} (Li ion) **3505 Wh/kg_{cell} (Li₂O₂) 1086 Wh/kg_{cell}, (ZnO) 1108 Wh/kg_{cell}, (NaO₂) 2567 Wh/kg_{cell} (Li₂S)**

Electrochemical cell that uses an anode made from pure metal and an external cathode of ambient air, typically with an aqueous or aprotic electrolyte.

> Aqueous and non-aqueous (aprotic) metal-air batteries

A CENTURY OLD TECHNOLOGY

Figure 1. Theoretical energy densities for different types of metal-air batteries. 15

CIC energi GUNE

MEMBER OF RASQUE RESEARCH & TECHNOLOGY ALLIANCE

GUNE What is a metal-air battery? MEMBER OF RASQUE RESEARCH & TECHNOLOGY ALLIANCE **OXYGEN AS FUEL** COMPONENTS Air electrode Film where oxygen diffuses and is reduced Metal anode (the actual cathode is O_2) Strong reducing power, lightness, and compactness. Light, compact, corrosion resistive and Other negative electrodes: inexpensive materials \rightarrow Carbon materials metal hydride, alloys, **Metal Anode** organic materials (Zn, Al, Mg etc) **Air Cathode** (Oxygen reduction catalyst) Mn+ OH-/O2-/O_2-02 Oxygen reduction reaction (ORR) **Oxygen evolution reaction (OER)** Air (O.) Electrolyte **Zn-air:** Aqueous alkaline Good ionic conductivity • electrolyte, gel electrolytes Electrically insulating nature ٠ Stability against the reducing potential of the ٠ Li-air, Na-air: Non-aqueous: negative metal organic liquids, polymers, Stability against the oxidizing potential of • inorganic solid electrolytes, oxygen. ionic liquids.

CIC energi

Electronic conduction Diffusion of O₂ gas Electrolyte wettability/Flooding

Oxygen reduction reaction (ORR) $O_2 + 1e^-$ or $2e^- \longrightarrow O_2^-$ (superoxide) / $O_2^{2^-}$ (peroxide)

Oxygen evolution reaction (OER) $O_2^- / O_2^{2-} \longrightarrow O_2 + 1e^- \text{ or } 2e^-$

10.1021/acsenergylett.7b00119 © CICenergiGUNE. 2020. All rights reserved. Limiting process for rechargeability

M_x(O_n)_y : metal oxides or hydroxides in the electrolyte or cathode surface

4. Aprotic-air batteries (Na)

Electrodeposition of Na Na dendrites

Energy Technol. 2017, 5, 2265-2274

Contamination: H_2O , air (O_2) – Protected Na

high volatility low solvent stability/oxygen solubility reactivity with superoxide contamination (e.g. air, H₂O)

Cathode design

Cell chemistry

H. Yadegari and X. Sun et al., EES 2014.

DISCHARGE PRODUCT NUCLEATION & GROWTH

Solution vs surface mechanisms

J. Phys. Chem. C 2015, 119, 22778. J. Phys. Chem. C 2017, 121, 85. Nat. Chem. 2015, 7, 496. ACS Energy Lett. 2017, 2, 2440. Nano Lett. 2018, 18, 1280. Energy Environ. Mater.2021,4, 158–177158.

Air cathode development

- The oxygen doesn't need to be store within the battery
 - Lightweight, and widely available

Electrolyte development Rate-limiting processes in batteries are controlled by solvation • Novel formulations

SEI formation

CIC energi GUNE

MEMBER OF RASQUE RESEARCH & TECHNOLOGY ALLIANCE

GRAPHENE PROCESSING

Graphite oxide route

Reduced graphene oxide (rGO) Defects in lattice/edges of the sheets.

Electrochemical exfoliation

Graphene (GNs)

NO DISPERSIBILITY

USE OF SYNTHETIC SURFACTANTS

RESTACKING!!! Loss of the excellent properties

3D reduced graphene oxide structures prevent sheet restacking

ENGINEERING 3D GRAPHENE AIR CATHODES

Pathways towards high performance Na-O₂ batteries: tailoring graphene aerogel cathode porosity & nanostructure<u>†</u>

Marina Enterría 💿², Cristina Botas 💿², Juan Luis Gómez-Urbano 💿², Begoña Acebedo 🤤², Juan Miguel López del Amo ª, Daniel Carriazo 💷 ở, Teófilo Rojo 💿 ** and Nagore Ortiz-Vitoriano 💿 **

3. Phosphates are able to bind oxygen species involved in discharge/charge.

small

Full Paper 🗈 Open Access 💿 💽 🗐 😒

Boosting the Performance of Graphene Cathodes in Na–O₂ Batteries by Exploiting the Multifunctional Character of Small Biomolecules

Marina Enterría 🗙, Juan Luis Gómez-Urbano, Jose María Munuera, Silvia Villar-Rodil, Daniel Carriazo, Juan Ignacio Paredes 🔀, Nagore Ortiz-Vitoriano 🔀

First published: 16 December 2020 | https://doi.org/10.1002/smll.202005034 | Citations: 1

CIC

energi GUNE

MEMBER OF RASQUE RESEARCH & TECHNOLOGY ALLIANCE

Engineering 3D Graphene Air Cathodes for Na-O₂ Batteries

BIOMOLECULE-ASSISTED ELECTROCHEMICAL EXFOLIATION OF GRAPHITE

Nucleotides: small innocuous biomolecules - adenosine monophosphate (AMP)

Dual functionality: exfoliating electrolyte/ colloidal stabilizer which could facilitate graphene processing in water

> Na-O₂ cell assembly and full discharge experiment

Current density: 0.2 mA cm⁻²

Characterization of the discharge products (XRD)

 The nucleotide does play a role on the cathode performance as the decomposition of the molecule leads to a significant decrease of the discharge capacity.

 Main discharge product NaO₂ for all the graphene cathodes (
 rechargeability)

> Characterization of the discharge products (SEM)

Temperature of the thermal treatment (i.e. AMP decomposition)

- AMP favors the nucleation of the NaO₂ on the surface of the graphene electrode, leading to a good dispersion of the discharge products.
- The removal of the AMP leads to the formation of bigger cubes suggesting a change in the mechanism whereby discharge products nucleate/growth in the electrolyte rather than on the surface.

Potential bifunctional catalysts >

Nucleotides, biomolecules to be studied

XMP ·NH 0 Ν ⊖O−P Θ Ô 0 0 ⊝ HO OH

Inosine monophosphate

CMP

Xanthosine monophosphate

Guanosine monophosphate

TMP

Thymidine

monophosphate

FMN OH 0 ⊖0-P-0 ≝ OH) ∎ OH 0 Θ 0 NH 0

Cytidine monophosphate

Flavin monophosphate

© CICenergiGUNE. 2020. All rights reserved.

> Evaluation of the electrocatalytic activity towards ORR and OER

Proof of concept with flavine/graphene hybrid (HFMN)

	ORR		OER	
	E _{onset} (-0.1 mAcm ⁻²)	Tafel slope (mV/dec)	E _{onset} (+0.5 mAcm ⁻²)	Tafel slope (mV/dec)
Graphene	0.7392	60	1.630	295
HFMN	0.7296	65	1.627	151

FUTURE OUTLOOK

CIC energiGUNE activity is focused on **cathode** and **electrolyte** materials development; moving towards solid electrolytes and bio-based separators.

C. Pozo-Gonzalo & N. Ortiz-Vitoriano; Current Opinion in Electrochemistry 2022, 36:101120 © CICenergiGUNE. 2020. All rights reserved. CIC energi GUNE

MEMBER OF RASQUE RESEARCH & TECHNOLOGY ALLIANCE

4. Aqueous-air batteries (Zn)

Zn dissolution

shape changes & dendrite growth

$$\begin{split} &Zn \rightarrow Zn^{2+} + 2e^{-} \\ &Zn^{2+} + 4OH^{-} \rightarrow Zn(OH)_{4}^{2-} \\ &(E^{o} = - 1(25 \text{ V vs. NHE}) \\ &Zn(OH)_{4}^{2-} \rightarrow ZnO + H_{2}O + 2OH^{-} \\ &Zn + 2H_{2}O \rightarrow Zn(OH)_{2} + H_{2} \uparrow^{[114]} \end{split}$$

Zn passivation ZnO deposition

Zn corrosion H_2 production

Sluggish oxygen reactions <u>ORR & OER</u> Bifunctional catalysts $O_2 + 2H_2O + 4e^- \rightarrow 4OH^- (E^0 = 0.40 \text{ V})$ $O_2 + H_2O + 2e^- \rightarrow HO_2^- + OH^- (E^0 = -0.07 \text{ V})$ $HO_2^- + H_2O + 2e^- \rightarrow 3OH^- (E^0 = 0.87 \text{ V})$ $2HO_2^- \rightarrow 2OH^- + O_2$ $M^{m+} - O + OH^- \rightarrow M^{(m-1)+} - O - OH + e^ M^{(m-1)+} - O - OH + OH^- \rightarrow M^{m+} - O - O^2^- + H_2O + e^ 2M^{m+} - O - O^2^- \rightarrow 2M^{m+} - O^2^- + O_2$

Carbon corrosion during OER

Electrolyte/Cathode interphase Wettability, porosity,

conductivity

Vulnerability to CO₂ Evaporation and leakage problems Cycling stability

In practise working **voltages** < **1.2 V**; < **60 % round-trip** energy efficiency. **Rechargeable** Zn-air battery still a great **challenge**.

> Zinc air batteries

CONFIGURATIONS

High chemical instability and parasitic reactions by the use of alkaline electrolytes lead to electrochemical irreversibility.

Zn-air primary

- MnO₂ cathode
 - Low activity & stability
- Aqueous electrolyte
 - Alkaline
- Zn anode

Zn-air secondary

- Cathode
 - Two cathodes
 - **o** Bifunctional cathode
- Electrolyte
 - Aqueous
 - o Non-aqueous
 - Semi-solid
 - o Solid
- Anode
 - Structure (fibers, sponge, etc.)
 - Surface modifications

Rechargeability depends on the combined improvements of all cell components

> Liquid electrolyte evaporates in the open system

Leakage Dendrites Evaporation Carbonate precipitation

Patent nº WO2022189566A1

CIC energi GUNE

Zn

MEMBER OF RASQUE RESEARCH & TECHNOLOGY ALLIANCE

Zinc air batteries

>

GEL POLYMER ELECTROLYTE

- Consisting of a polymer host and a liquid electrolyte.
- High conductivity, flexibility, interfacial contact.

Chemical Engineering Journal 408 (2021) 127241

> Biopolymers in EES devices

WHICH BIOPOLYMER FOR MY ZAB?

Synthetic or natural biopolymer?

Polymer matrices generally proposed in the literature include polyvinyl alcohol (PVA), polyethylene oxide (PEO), polyacrylamide (PAM), polyacrylic acid (PAA), and other synthetic (bio)polymers (higher ionic conductivity).

> Electrolyte development

AGAROSE BASED ALKALINE GEL ELECTROLYTE

Simple preparation

> Ionic conductivity at different temperatures

GEL BEHAVES SIMILAR TO LIQUID ELECTROLYTE

Compression key to enabling a good contact in the battery GEL STABLE UPON CYCLING

> Primary Zn-air Battery

² 4 6 8 10 KOH Concentration (M)

AGAR-AGAR BASED GEL ELECTROLYTE UPSCALING

cecasa

> Zinc-air batteries

AGAR-AGAR BASED GEL ELECTROLYTE UPSCALING

> Towards Industrialization

UP-SCALING DECREASES ZN UTILIZATION

> Zinc air batteries

AGAR-AGAR BASED GEL ELECTROLYTE UPSCALING

Does the storing & temperature affect (6M)?

%

cecasa

20

0

Aged a

16

30

Resistance (Ohms)

Railway Signalling Hearing aids

Wearable electronics

Primary ZABs

Portable, small devices, low consumption, long duration

Electrical rechargeability bottleneck

Secondary (electrically rechargeable) ZABs Centralized/Remote stationary, grids, high energy/power

Renewables' storage

Navigation Aids

Smart Microgrids

Citta Collegia Sector Cale

https://www.cegasa.com/ez8

> Metal-air batteries

MATERIALS DEVELOPMENT AND INTEGRATION

CIC energi GUNE

MEMBER OF RASQUE RESEARCH B TECHNOLOGY ALLIANCE

> ACKNOWLEDGEMENTS

TEAM & FUNDING

M-air RL at CICe

Collaborators

Funding

Ayuda PID2020-117626RA-I00 financiada por MCIN/AEI/10.13039/501100011033 RYC2020-030104-I

GRACIAS · THANK YOU · ESKERRIK ASKO

CIC energigune

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

CONTACT

Nagore Ortiz-Vitoriano TRANSPORT & INTERFACES RESEARCH TEAM LEADER METAL AIR RESEARCH LINE MANAGER nortiz@cicenergigune.com

Parque Tecnológico • c/Albert Einstein 48 01510 Vitoria-Gasteiz • (Álava) SPAIN +34 945 29 71 08

Making sustainability real

